Fate of biosolids trace metals in a dryland wheat agroecosystem.

نویسندگان

  • J A Ippolito
  • K A Barbarick
چکیده

Biosolids land application for beneficial reuse applies varying amounts of trace metals to soils. Measuring plant-available or total soil metals is typically performed to ensure environmental protection, but these techniques do not quantify which soil phases play important roles in terms of metal release or attenuation. This study assessed the distribution of Cd, Cr, Cu, Mo, Ni, Pb, and Zn associated with soluble/exchangeable, specifically adsorbed/carbonate-bound, amorphous Mn hydroxyoxide-bound, amorphous Fe hydroxyoxide-bound, organically complexed, and residual inorganic phases. Biosolids were applied every 2 yr from 1982 to 2002 (except in 1998) at rates of 0, 6.7, 13.4, 26.8, and 40.3 dry Mg biosolids ha(-)(1) to 3.6- by 17.1-m plots. In 2003, 0- to 20-cm and 20- to 60-cm soil depths were collected and subjected to 4 mol L(-1) HNO(3) digestion and sequential extraction. Trace metals were concentrated in the 0- to 20-cm depth, with no significant observable downward movement using 4 mol L(-1) HNO(3) or sequential extraction. The sequential extraction showed nearly all measurable Cd present in relatively mobile forms and Cr, Cu, Mo, Ni, Pb, and Zn present in more resistant phases. Biosolids application did not affect Cd or Cr fractionation but did increase relatively immobile Cu, Mo, and Zn phases and relatively mobile Cu, Ni, and Pb pools. The mobile phases have not contributed to significant downward metal movement. Long-term, repeated biosolids applications at rates considered several times greater than agronomic levels should not significantly contribute to downward metal transport and ground water contamination for soils under similar climatic conditions, agronomic practices, and histories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uptake coefficients for biosolids-amended dryland winter wheat.

The USEPA adapted a risk assessment approach in biosolids regulations that includes the use of an uptake coefficient (UC) (i.e., the ratio of plant concentration to quantity of element added) to determine limitations on selected elemental additions. The nature of the risk assessment requires UCs to be constants. Our hypothesis was that the UC for Cu, Fe, Mo, Ni, P, and Zn for biosolids-amended ...

متن کامل

Organic Waste Nitrogen and Phosphorus Dynamics under Dryland Agroecosystems

Organic waste beneficial-use programs effectively recycle plant nutrients when applied at agronomic rates. Our objectives were to determine: biosolids nitrogen (N) fertilizer equivalency; biosolids N mineralization during years of above and below average precipitation and long-term N mineralization; which soil phosphorus (P) phases dominate following years of biosolids application; and the pote...

متن کامل

Geochemical Modeling of Trace Element Release from Biosolids

Biosolids-borne trace elements may be released to the environment when biosolids are used as fertilizers in farm land. Trace element leachate concentrations from biosolids are known to be limited by both organic and inorganic sorbent surfaces; this experimental evidence has not been previously verified with geochemical modeling of sorption reactions. In this study, pH-dependent leaching experim...

متن کامل

Recovery and distribution of biosolids-derived trace metals in a clay loam soil.

The long-term mobility of trace metals has been cited as a potential hazard by critics of EPA 503 rule governing the land application of biosolids. The objectives of this study were to assess the accumulation of Cu, Ni, Cd, and Zn within the soil profile; the distribution of exchangeable, specifically adsorbed, organic, and oxide fractions of each metal; and mass balance of Cu, Ni, and Zn 17 yr...

متن کامل

Effects of long-term application of biosolids for mine land reclamation on groundwater chemistry: trace metals.

Data collected for 35 yr from a 1790-ha strip mine reclamation site in Fulton County, Illinois, where biosolids were applied from 1972 to 2004, were used to evaluate the impacts of long-term biosolids application on metal concentrations in groundwater. Groundwater samples were collected between 1972 and 2006 from wells installed in seven strip-mined fields treated with biosolids at cumulative l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of environmental quality

دوره 37 6  شماره 

صفحات  -

تاریخ انتشار 2008